Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 644: 105-111, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36640664

RESUMO

RNautophagy/DNautophagy (RDA) is an autophagic process that refers to the direct uptake of nucleic acids by lysosomes for degradation. Autophagy relies on lysosomes and lysosomal acidification is crucial for the degradation of intracellular components. However, whether lysosomal acidification interferes with nucleic acid uptake during RDA is unclear. In this study, we focused on vacuolar H+-ATPase (V-ATPase), the major proton pump responsible for maintaining an acidic pH in lysosomes. Our results show that lysosomes take up nucleic acids independently of the intralysosomal acidic pH during RDA. Isolated lysosomes treated with bafilomycin A1, a potent V-ATPase inhibitor, did not degrade, but took up RNA at similar levels as the control lysosomes. Similarly, the knockdown of Atp6v1a, the gene that encodes V-ATPase catalytic subunit A, did not affect the RNA uptake ability of isolated lysosomes. In addition, we demonstrated that nucleic acid uptake by isolated lysosomes necessitates ATP consumption, although V-ATPase is not required for the uptake process. These results broaden our understanding of the mechanisms underlying nucleic acid degradation via autophagy.


Assuntos
Ácidos Nucleicos , ATPases Vacuolares Próton-Translocadoras , Ácidos Nucleicos/metabolismo , RNA/genética , RNA/metabolismo , Lisossomos/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Concentração de Íons de Hidrogênio , Trifosfato de Adenosina/metabolismo
2.
Neurochem Int ; 152: 105243, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800582

RESUMO

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are major neurodegenerative disorders that share commonalities in their pathology involving the formation of Lewy bodies, the main component of which is α-synuclein protein. Aberrancy and dysfunction in lysosomes have been suggested to play critical roles in the pathogenesis of Lewy body diseases. We recently identified a novel lysosomal degradation pathway in which various macromolecules, including α-synuclein protein, are directly imported into lysosomes and degraded. In this study, we analyzed the levels and localization of the lysosomal membrane protein SIDT2, a key factor in this pathway, in the postmortem brains of patients with PD and DLB. The levels of SIDT2 protein were significantly higher in the anterior cingulate cortex (ACC) of both PD and DLB cases than in age-matched control subjects, but this difference was not observed in the inferior frontal gyrus. The levels of SIDT2 also showed a strong correlation with α-synuclein levels in the ACC of all subjects, including controls. SIDT2 was colocalized with aggregates positive for phosphorylated α-synuclein protein, which is a hallmark of Lewy bodies, in all examined cases of both PD and DLB. These observations suggest that changes in the levels and localization of SIDT2 occur at the lesion site of Lewy body diseases in accordance with the progression of Lewy body pathology. Our findings provide mechanistic insights into the pathogenesis of Lewy body diseases, as well as other neurodegenerative disorders, and may provide clues for improved diagnosis, prevention, and therapeutic intervention for such diseases.


Assuntos
Encéfalo/metabolismo , Doença por Corpos de Lewy/patologia , Proteínas de Transporte de Nucleotídeos/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Autopsia/métodos , Encéfalo/patologia , Humanos , Doença por Corpos de Lewy/metabolismo , Camundongos , Proteínas de Transporte de Nucleotídeos/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética
3.
Autophagy ; 16(11): 1974-1988, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31944164

RESUMO

RNautophagy and DNautophagy (RDA) are unconventional autophagic pathways where nucleic acids are directly transported through the lysosomal membrane, then degraded inside lysosomes. We have previously shown that bitopic protein LAMP2C and putative RNA transporter SIDT2, both lysosomal membrane proteins, mediate the direct transport of nucleic acids into lysosomes and that LAMP2C interacts with the nucleic acids and functions as a receptor during RDA. Because SIDT2-mediated RDA occurs in isolated lysosomes that lack LAMP2C, in this study, we tested the hypothesis that SIDT2 itself could also interact with the nucleic acids. Our results show that SIDT2 directly binds RNA and DNA through an arginine-rich motif (ARM) located within its main cytosolic domain, and disruption of this motif dramatically impairs SIDT2-mediated RNautophagic activity. We also found that SIDT2 interacts with exon 1 of HTT (huntingtin) transcript through the ARM in a CAG-dependent manner. Moreover, overexpression of SIDT2 promoted degradation of HTT mRNA and reduced the levels of polyglutamine-expanded HTT aggregates, hallmarks of Huntington disease. In addition, a comparative analysis of LAMP2C and SIDT2 functions at the cellular level revealed that the two proteins exert a synergistic effect on RNautophagic activity and that the ARMs which mediate the interactions of SIDT2 and LAMP2C with RNA are essential for the synergy. Together, our results point out the importance of nucleic acid-binding capacity of SIDT2 for its function in translocating nucleic acids through the lipid bilayer and suggests a potential application of RNautophagy activation to reduce the expression levels of disease-causing toxic proteins. Abbreviations: ACTB/ß-actin: actin beta; ARM: arginine-rich motif; CBB: Coomassie Brilliant Blue; CD: cytosolic domain; COX4I1/COX4: cytochrome c oxidase subunit 4I1; E. coli: Escherichia coli; EGFP: enhanced green fluorescent protein; EtBr: ethidium bromide; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GST: glutathione S-transferase; HRP: horseradish peroxidase; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; HTT: huntingtin; HTTex1: exon 1 of the HTT gene; LAMP2: lysosomal associated membrane protein 2; LMNA: lamin A/C; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate-buffered saline; PEI: polyethyleneimine; polyQ: polyglutamine; qPCR: quantitative PCR; RAB5A: RAB5A, member RAS oncogene family; RDA: RNautophagy and DNautophagy; SCARB2/LIMP2: scavenger receptor class B member 2; SDS: sodium dodecyl sulfate; SID-1: systemic RNA interference deficient-1; SIDT2: SID1 transmembrane family member 2; WT: wild type.


Assuntos
Arginina/metabolismo , Lisossomos/metabolismo , Ácidos Nucleicos/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Transporte de RNA/fisiologia , Animais , Autofagia/fisiologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Interferência de RNA/fisiologia
4.
J Cell Sci ; 130(17): 2843-2853, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724756

RESUMO

RNA degradation is an essential process for maintaining cellular homeostasis. Previously, we discovered a novel RNA degradation system, RNautophagy, during which direct import of RNA into lysosomes in an ATP-dependent manner followed by degradation takes place. The putative nucleic acid transporter SID-1 transmembrane family member 2 (SIDT2) predominantly localizes to lysosomes and mediates the translocation of RNA into lysosomes during RNautophagy. However, little is known about the mechanisms of sorting SIDT2 to lysosomes. Here, we show that three cytosolic YxxΦ motifs (in which x is any amino acid and Φ is an amino acid with a bulky hydrophobic side chain) are required for the lysosomal localization of SIDT2, and that SIDT2 interacts with adaptor protein complexes AP-1 and AP-2. We also find that localization to lysosomes by these three motifs is necessary for SIDT2 function in the process of RNautophagy, and that SIDT2 strikingly increases endogenous RNA degradation at the cellular level. To our knowledge, this is the first study to report an endogenous intracellular protein for which overexpression substantially increased intracellular RNA degradation. This study provides new insight into lysosomal targeting of proteins and intracellular RNA degradation, and further confirms the critical function of SIDT2 in RNautophagy.This article has an associated First Person interview with the first author of the paper.


Assuntos
Autofagia , Lisossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , RNA/metabolismo , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Complexo de Golgi/metabolismo , Camundongos , Proteínas de Transporte de Nucleotídeos , Ligação Proteica , Transporte Proteico , Proteômica , Estabilidade de RNA
5.
RNA Biol ; 14(11): 1534-1543, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28277980

RESUMO

Single-stranded oligonucleotides (ssOligos) are efficiently taken up by living cells without the use of transfection reagents. This phenomenon called 'gymnosis' enables the sequence-specific silencing of target genes in various types of cells. Several antisense ssOligos are used for the treatment of human diseases. However, the molecular mechanism underlying the uptake of naked ssOligos into cells remains to be elucidated. Here, we show that systemic RNA interference deficient-1 (SID-1) transmembrane family 2 (SIDT2), a mammalian ortholog of the Caenorhabditis elegans double-stranded RNA channel SID-1, mediates gymnosis. We show that the uptake of naked ssOligos into cells is significantly downregulated by knockdown of SIDT2. Furthermore, knockdown of SIDT2 inhibited the effect of antisense RNA mediated by gymnosis. Overexpression of SIDT2 enhanced the uptake of naked ssOligos into cells, while a single amino acid mutation in SIDT2 abolished this effect. Our findings highlight the mechanism of extra- and intracellular RNA transport and may contribute to the further development of nucleic acid-based therapies.


Assuntos
MicroRNAs/antagonistas & inibidores , Proteínas de Transporte de Nucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Interferência de RNA , Animais , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Corantes Fluorescentes/química , Expressão Gênica , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Proteínas de Transporte de Nucleotídeos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Transporte de RNA , Rodaminas/metabolismo , Coloração e Rotulagem/métodos
6.
Autophagy ; 13(1): 218-222, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27846365

RESUMO

Lysosomes degrade macromolecules such as proteins and nucleic acids. We previously identified 2 novel types of autophagy, RNautophagy and DNautophagy, where lysosomes directly take up RNA and DNA, in an ATP-dependent manner, for degradation. We have also reported that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference defective-1), mediates RNA translocation during RNautophagy. In this addendum, we report that SIDT2 also mediates DNA translocation in the process of DNautophagy. These findings help elucidate the mechanisms underlying the direct uptake of nucleic acids by lysosomes and the physiological functions of DNautophagy.


Assuntos
Membrana Celular/metabolismo , DNA/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , RNA/metabolismo , RNA Interferente Pequeno/metabolismo
7.
Autophagy ; 12(3): 565-78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27046251

RESUMO

Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ˜50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.


Assuntos
Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Transporte de RNA , RNA/metabolismo , Animais , Autofagia , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Ligação Proteica , Estabilidade de RNA
8.
Biochem Biophys Res Commun ; 463(1-2): 82-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25998392

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive degeneration of motor neurons. TDP-43 has been found to be a major component of ubiquitin-positive inclusions in ALS. Aberrant TDP-43, which is found in inclusions, is phosphorylated and is re-distributed from the nucleus to the cytoplasm. Alterations of TDP-43 protein, particularly insolubilization/aggregation and cytosolic distribution are thought to be involved in the pathogenesis of ALS. Levels of 4-hydroxynonenal (HNE), a marker of oxidative stress, have been reported to be elevated in sporadic ALS patients. However, the effects of HNE on TDP-43 are unclear. In this study, we found that HNE treatment of cells causes insolubilization, phosphorylation, and partial cytosolic localization of TDP-43. HNE-induced cytosolic TDP-43 was diffusely localized and only a small proportion of TDP-43 localized to stress granules, which are transient structures. HNE-induced TDP-43 insolubilization and phosphorylation were even observed 24 h after washout of HNE. We also showed that the cysteine residues of TDP-43 are responsible for HNE-induced insolubilization of TDP-43. Our results indicate that HNE can cause biochemical changes of TDP-43, which resemble the aberrant alterations of this protein in ALS, and suggest that upregulation of HNE could be a risk factor for ALS.


Assuntos
Aldeídos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Aldeídos/farmacologia , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Biomarcadores/metabolismo , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Estresse Oxidativo , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Risco , Solubilidade
9.
J Biol Chem ; 288(18): 12615-26, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23543736

RESUMO

Dysregulation of cell proliferation and the cell cycle are associated with various diseases, such as cancer. Cyclin-dependent kinases (CDKs) play central roles in cell proliferation and the cell cycle. Ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in a restricted range of tissues, including the brain and numerous types of cancer. However, the molecular functions of UCH-L1 remain elusive. In this study, we found that UCH-L1 physically interacts with CDK1, CDK4, and CDK5, enhancing their kinase activity. Using several mutants of UCH-L1, we showed that this enhancement is dependent upon interaction levels between UCH-L1 and CDKs but is independent of the known ubiquitin-related functions of UCH-L1. Gain- and loss-of-function studies revealed that UCH-L1 enhances proliferation of multiple cell types, including human cancer cells. Inhibition of the interaction between UCH-L1 and cell cycle-associated CDK resulted in the abolishment of UCH-L1-induced enhancement of cell proliferation. RNA interference of UCH-L1 reduced the growth of human xenograft tumors in mice. We concluded that UCH-L1 is a novel regulator of the kinase activities of CDKs. We believe that our findings from this study will significantly contribute to our understanding of cell cycle-associated diseases.


Assuntos
Proteína Quinase CDC2/metabolismo , Proliferação de Células , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Ubiquitina Tiolesterase/metabolismo , Animais , Proteína Quinase CDC2/genética , Células COS , Chlorocebus aethiops , Quinase 4 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/genética , Células HeLa , Humanos , Camundongos , Mutação , Células NIH 3T3 , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/patologia , Transplante Heterólogo , Ubiquitina Tiolesterase/genética
10.
Biochem Biophys Res Commun ; 387(1): 121-6, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19576169

RESUMO

Mutations in the Cu,Zn-superoxide dismutase (SOD1) gene cause 20-25% of familial amyotrophic lateral sclerosis (ALS). Mutant SOD1 causes motor neuron degeneration through toxic gain-of-function(s). However, the direct molecular targets of mutant SOD1, underlying its toxicity, are not fully understood. In this study, we found that alpha/beta-tubulin is one of the major mutant SOD1-interacting proteins, but that wild-type SOD1 does not interact with it. The interaction between tubulin and mutant SOD1 was detected in the spinal cords of mutant G93A SOD1 transgenic mice before the onset of symptoms. Tubulin interacted with amino acid residues 1-23 and 116-153 of SOD1. Overexpression of mutant SOD1 resulted in the accumulation of tubulin in detergent-insoluble fractions. In a cell-free system, mutant SOD1 modulated tubulin polymerization, while wild-type SOD1 did not. Since tightly regulated microtubule dynamics is essential for neurons to remain viable, alpha/beta-tubulin could be an important direct target of mutant SOD1.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Superóxido Dismutase/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Superóxido Dismutase/genética
11.
Biochem Biophys Res Commun ; 377(3): 741-6, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18835249

RESUMO

Insulin receptor substrates (IRSs) play essential roles in signal transduction of insulin and insulin-like growth factors. Previously, we showed that IRS-3 is localized to the nucleus as well as the cytosol, while IRS-1 and 2 are mainly localized to the cytoplasm. In the present study, we found that importin beta directly interacts with IRS-3 and is able to mediate nuclear transport of IRS-3. Importin beta interacted with the pleckstrin homology domain, the phosphotyrosine binding domain and the C-terminal region of IRS-3; indeed all of these fragments exhibited predominant nuclear localization. By contrast, almost no interaction of importin beta with IRS-1 and -2 was observed, and their C-terminal regions displayed discrete spotty images in the cytosol. In addition, using chimeric proteins between IRS-1 and IRS-3, we revealed that the C-terminal regions are the main determinants of the differing subcellular localizations of IRS-1 and IRS-3.


Assuntos
Receptor de Insulina/metabolismo , beta Carioferinas/metabolismo , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Humanos , Mutação , Fosfotirosina/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptor de Insulina/genética , beta Carioferinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...